[go: up one dir, main page]

login
A154340
a(n) = ( (5 + 2*sqrt(2))^n - (5 - 2*sqrt(2))^n )/(4*sqrt(2)).
1
1, 10, 83, 660, 5189, 40670, 318487, 2493480, 19520521, 152816050, 1196311643, 9365243580, 73315137869, 573942237830, 4493065034527, 35173632302160, 275354217434641, 2155590425209690, 16874882555708003, 132103788328515300
OFFSET
1,2
COMMENTS
First differences are in A164588.
Lim_{n -> infinity} a(n)/a(n-1) = 5 + 2*sqrt(2) = 7.8284271247....
FORMULA
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1, with a(0)=0, a(1)=1. - Philippe Deléham, Jan 12 2009
G.f.: x/(1 - 10*x + 17*x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009
E.g.f.: (1/sqrt(8))*exp(5*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 11 2016
MAPLE
A154340:=n->((5+2*sqrt(2))^n-(5-2*sqrt(2))^n)/(4*sqrt(2)): seq(simplify(A154340(n)), n=1..30); # Wesley Ivan Hurt, Sep 12 2016
MATHEMATICA
Drop[CoefficientList[Series[x/(1-10*x+17*x^2), {x, 0, 30}], x], 1] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011, modified by G. C. Greubel, Jun 01 2019 *)
LinearRecurrence[{10, -17}, {1, 10}, 30] (* or *) Table[Simplify[((5 + 2*Sqrt[2])^n -(5-2*Sqrt[2])^n)/(4*Sqrt[2])], {n, 1, 30}] (* G. C. Greubel, Sep 11 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)^n-(5-2*r)^n)/(4*r): n in [1..30] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
(Sage) [lucas_number1(n, 10, 17) for n in range(1, 30)] # Zerinvary Lajos, Apr 26 2009
(Magma) I:=[1, 10]; [n le 2 select I[n] else 10*Self(n-1)-17*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 12 2016
(PARI) a(n)=([0, 1; -17, 10]^(n-1)*[1; 10])[1, 1] \\ Charles R Greathouse IV, Sep 12 2016
CROSSREFS
Cf. A002193 (decimal expansion of sqrt(2)), A164588.
Sequence in context: A360698 A026954 A116879 * A037699 A037608 A055149
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
STATUS
approved