[go: up one dir, main page]

login
A152937
A vector recursion designed around a factorial row sum : v(n)=if[odd,{1.n,n^2,...,n!-Sum[2^m,{m,0,n/2-1}],n!-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],if[ even{1.n,n^2,...,n!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].
0
1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 5, 54, 54, 5, 1, 1, 6, 36, 634, 36, 6, 1, 1, 7, 49, 2463, 2463, 49, 7, 1, 1, 8, 64, 512, 39150, 512, 64, 8, 1, 1, 9, 81, 729, 180620, 180620, 729, 81, 9, 1, 1, 10, 100, 1000, 10000, 3606578, 10000, 1000, 100, 10, 1
OFFSET
0,8
COMMENTS
Row sums are:
{1, 2, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...}.
This designed symmetrical triangle is meant to be like the Eulerian numbers
in row sum ( the Stirling numbers of the first kind also have factorial row sums).
FORMULA
v(n)=if[odd,{1.n,n^2,...,n!-Sum[2^m,{m,0,n/2-1}],n!-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],
if[ even{1.n,n^2,...,n!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].
EXAMPLE
{1},
{1, 1},
{1, 0, 1},
{1, 2, 2, 1},
{1, 4, 14, 4, 1},
{1, 5, 54, 54, 5, 1},
{1, 6, 36, 634, 36, 6, 1},
{1, 7, 49, 2463, 2463, 49, 7, 1},
{1, 8, 64, 512, 39150, 512, 64, 8, 1},
{1, 9, 81, 729, 180620, 180620, 729, 81, 9, 1},
{1, 10, 100, 1000, 10000, 3606578, 10000, 1000, 100, 10, 1}
MATHEMATICA
Clear[v, n]; v[0] = {1}; v[1] = {1, 1};
v[n_] := v[n] = If[Mod[n, 2] == 0, Join[Table[ n^m, {m, 0, Floor[n/2] - 1}], {n! - 2*Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]],
Join[Table[ n^m, {m, 0, Floor[n/2] - 1}], {n!/2 - Sum[ n^m, {m, 0, Floor[n/2] - 1}], n!/2 - Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]]]'
Table[v[n], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A298261 A368135 A341991 * A331315 A360936 A361014
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 15 2008
STATUS
approved