OFFSET
2,1
LINKS
S. Schlicker, L. Morales, and D. Schultheis, Polygonal chain sequences in the space of compact sets, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.
Index entries for linear recurrences with constant coefficients, signature (8, -8, 1).
FORMULA
Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: x^2*(289 - 350*x + 45*x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4.
(End)
MAPLE
with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=2: l:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n, l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n, l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n, l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n, l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Schlicker, Dec 15 2008
STATUS
approved