[go: up one dir, main page]

login
A152680
a(n) = 4*A005098(n) = A002144(n) - 1.
7
4, 12, 16, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 136, 148, 156, 172, 180, 192, 196, 228, 232, 240, 256, 268, 276, 280, 292, 312, 316, 336, 348, 352, 372, 388, 396, 400, 408, 420, 432, 448, 456, 460, 508, 520, 540, 556, 568, 576, 592, 600, 612, 616
OFFSET
1,1
COMMENTS
If we take the 4 numbers 1, A002314(n), A152676(n), A152680(n) then the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic with the multiplication table of {1,I,-I,-1} where I is sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with I or -I and A152676(n) vice versa -I or I.
1, A002314(n), A152676(n), A152680(n) are subfields of the Galois Field [A002144(n)].
Numbers n such that A172019(n) + 1 = primes - 1. - Giovanni Teofilatto, Feb 02 2010
MATHEMATICA
aa = {}; Do[If[Mod[Prime[n], 4] == 1, AppendTo[aa, Prime[n] - 1]], {n, 1, 200}]; aa
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 10 2008
STATUS
approved