[go: up one dir, main page]

login
A151643
Number of permutations of 4 indistinguishable copies of 1..n with exactly 5 adjacent element pairs in decreasing order.
2
0, 0, 8464, 15018688, 6501577152, 1585757994496, 290861341616496, 45679059507623040, 6563622028755987104, 895009629522636673728, 118277136569294999638992, 15337783893522951844828992, 1966328218272794506172178816, 250347808250994150312231611520
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (462, -91531, 10359990, -751926160, 37211988696, -1302889937812, 33041329661136, -616216166660230, 8532037831808700, -88161849837783250, 681071135526667500, -3928678356172712500, 16849648606559250000, -53333569862180312500, 123260625734287500000, -205051485813712890625, 240815404573652343750, -193749765819873046875, 101292345769042968750, -30943180590820312500, 4187798876953125000).
FORMULA
From G. C. Greubel, Sep 10 2022: (Start)
a(n) = Sum_{j=0..5} (-1)^j*binomial(4*n+1, j)*binomial(9-j, 4)^n.
G.f., e.g.f., and recurrence are in the file "Generating functions and recurrence". (End)
MATHEMATICA
Table[Sum[(-1)^j*Binomial[4*n+1, j]*Binomial[9-j, 4]^n, {j, 0, 5}], {n, 30}] (* G. C. Greubel, Sep 10 2022 *)
PROG
(Magma) [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(9-j, 4)^n: j in [0..5]]): n in [1..30]]; // G. C. Greubel, Sep 10 2022
(SageMath)
def A151643(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(9-j, 4)^n for j in (0..5))
[A151643(n) for n in (1..30)] # G. C. Greubel, Sep 10 2022
CROSSREFS
Column k=5 of A236463.
Sequence in context: A170787 A237846 A232907 * A031590 A322160 A253499
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved