[go: up one dir, main page]

login
A147593
Expansion of 1/(1 - x + x^3 - 3*x^4 + x^5 - x^7 + x^8).
2
1, 1, 1, 0, 2, 3, 5, 3, 6, 8, 16, 16, 24, 28, 50, 61, 91, 109, 170, 220, 327, 415, 607, 800, 1164, 1536, 2192, 2928, 4172, 5616, 7921, 10705, 15049, 20460, 28638, 39027, 54453, 74451, 103662, 141996, 197288, 270704, 375632, 516096, 715258, 983661, 1362091
OFFSET
0,5
FORMULA
G.f.: -1/(x^4*f(x)*f(1/x)), where f(x) = -1 - x^3 + x^4.
G.f.: 1/((1+x^3-x^4)*(1-x-x^4)). - Colin Barker, Nov 04 2012
MATHEMATICA
f[x_]= x^4-x^3-1; CoefficientList[Series[-1/(x^4*f[x]*f[1/x]), {x, 0, 50}], x]
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1+x^3-x^4)*(1-x-x^4)) )); // G. C. Greubel, Oct 25 2022
(SageMath)
def A147593_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x^3-x^4)*(1-x-x^4)) ).list()
A147593_list(50) # G. C. Greubel, Oct 25 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 08 2008
EXTENSIONS
Edited by Joerg Arndt and Colin Barker, Nov 04 2012.
STATUS
approved