[go: up one dir, main page]

login
A144294
Let k = n-th nonsquare = A000037(n); then a(n) = smallest prime p such that k is not a square mod p.
9
3, 5, 3, 7, 5, 3, 7, 3, 5, 5, 3, 13, 3, 5, 7, 3, 11, 5, 3, 7, 3, 5, 5, 3, 11, 7, 3, 5, 7, 3, 5, 3, 11, 7, 3, 5, 5, 3, 7, 11, 3, 5, 3, 11, 5, 3, 7, 7, 3, 5, 5, 3, 13, 7, 3, 5, 3, 7, 5, 3, 7, 13, 3, 5, 5, 3, 7, 7, 3, 5, 11, 3, 5, 3, 11, 11, 3, 5, 5, 3, 7, 17, 3, 5, 7, 3, 7, 5, 3, 13
OFFSET
1,1
COMMENTS
In a posting to the Number Theory List, Oct 15 2008, Kurt Foster remarks that a positive integer M is a square iff M is a quadratic residue mod p for every prime p which does not divide M. He then asks how fast the present sequence grows.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
with(numtheory); f:=proc(n) local M, i, j, k; M:=100000; for i from 2 to M do if legendre(n, ithprime(i)) = -1 then RETURN(ithprime(i)); fi; od; -1; end;
PROG
(PARI) a(n)=my(k=n+(sqrtint(4*n)+1)\2); forprime(p=2, , if(!issquare(Mod(k, p)), return(p))) \\ Charles R Greathouse IV, Aug 28 2016
(Python)
from math import isqrt
from sympy.ntheory import nextprime, legendre_symbol
def A144294(n):
k, p = n+(m:=isqrt(n))+(n>=m*(m+1)+1), 2
while (p:=nextprime(p)):
if legendre_symbol(k, p)==-1:
return p # Chai Wah Wu, Oct 20 2024
CROSSREFS
For records see A144295, A144296. See A092419 for another version.
Sequence in context: A075572 A089992 A074593 * A255313 A305883 A154800
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 03 2008
STATUS
approved