OFFSET
1,1
COMMENTS
Also: numbers with prime signature {3,2}.
This is a subsequence of A114128. [Hasler]
Every a(n) is an Achilles number (A052486). They are minimal, meaning no proper divisor is an Achilles number. - Antonio Roldán, Dec 27 2011
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) = A085548 * A085541 - A085965 = 0.043280..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
EXAMPLE
The first three terms of this sequence are 3^2 * 2^3 = 72, 2^2 * 3^3 = 108, 5^2 * 2^3 = 200.
MATHEMATICA
f[n_] := Sort[Last/@FactorInteger[n]] == {2, 3}; Select[Range[30000], f] (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)
PROG
(PARI) for(n=1, 10^5, omega(n)==2 || next; vecsort(factor(n)[, 2])==[2, 3]~ && print1(n", "))
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/3), t=p^3; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Aug 27 2008
STATUS
approved