[go: up one dir, main page]

login
A143538
Triangle read by rows, T(n,k) = 1 if k is prime, 0 otherwise; 1 <= k <= n.
3
0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1
OFFSET
1,1
COMMENTS
Triangle read by rows, T(n,k) = 1 if k is prime, 0 otherwise; 1 <= k <= n. A000012 * (A010051 * 0^(n-k)). A010051 * 0^(n-k) = an infinite lower triangular matrix with A010051 (the characteristic function of the primes) as the main diagonal and the rest zeros. The multiplier A000012 takes partial sums of column terms.
FORMULA
a(n) = A010051(A002260(n)). - Wesley Ivan Hurt, Sep 20 2021
EXAMPLE
First few rows of the triangle =
0;
0, 1;
0, 1, 1;
0, 1, 1, 0;
0, 1, 1, 0, 1;
0, 1, 1, 0, 1, 0;
0, 1, 1, 0, 1, 0, 1;
...
MATHEMATICA
Table[If[PrimeQ[k], 1, 0], {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 17 2017 *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(if(isprime(k), 1, 0), ", "))) \\ G. C. Greubel, Sep 17 2017
CROSSREFS
Cf. A000720 (row sums), A002260, A010051.
Sequence in context: A164056 A286059 A163539 * A242018 A324682 A288132
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 23 2008
STATUS
approved