[go: up one dir, main page]

login
A143535
Triangle read by rows, A122414 * A000012; 1<=k<=n.
2
0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,16
COMMENTS
Row sums = A008472, the sum of distinct primes dividing n: (0, 2, 3, 2, 5, 5, 7, 2, 3, 7,...). Example: a(10) = 7 = 2 + 5.
FORMULA
Triangle read by rows, A122414 * A000012; 1<=k<=n. By rows, partial sums of A122414 terms starting from the right.
EXAMPLE
First few rows of the triangle =
0;
1, 1;
1, 1, 1;
1, 1, 0, 0;
1, 1, 1, 1, 1;
2, 2, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1;
1, 1, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 0, 0, 0, 0, 0;
2, 2, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
Example: row 6 = (2, 2, 1, 0, 0, 0) = partial sums starting from the right of row 6, A122414: (0, 1, 1, 0, 0, 0).
CROSSREFS
Sequence in context: A334221 A368842 A089069 * A301366 A250100 A339627
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 23 2008
STATUS
approved