[go: up one dir, main page]

login
A143519
Moebius transform of A010051, the characteristic function of the primes: a(n) = Sum_{d|n} mu(n/d)*A010051(d); A054525 * A010051.
10
0, 1, 1, -1, 1, -2, 1, 0, -1, -2, 1, 1, 1, -2, -2, 0, 1, 1, 1, 1, -2, -2, 1, 0, -1, -2, 0, 1, 1, 3, 1, 0, -2, -2, -2, 0, 1, -2, -2, 0, 1, 3, 1, 1, 1, -2, 1, 0, -1, 1, -2, 1, 1, 0, -2, 0, -2, -2, 1, -1, 1, -2, 1, 0, -2, 3, 1, 1, -2, 3, 1, 0, 1, -2, 1, 1, -2, 3, 1, 0, 0, -2, 1, -1, -2, -2, -2, 0, 1
OFFSET
1,6
COMMENTS
A010051 = A051731 * A143519 (since A051731 = the inverse Mobius transform).
A000720(n) = Sum_{k=1..n} a(k) floor(n/k) where A000720(n) is the number of primes <= n. - Steven Foster Clark, May 25 2018
LINKS
FORMULA
Mobius transform of A010051, the characteristic function of the primes.
Row sums of triangle A143518.
a(n) = Sum_{d|n} A010051(d)*A008683(n/d). - Antti Karttunen, Jul 19 2017
a(n) = Sum_{a*b*c=n} omega(a)*mu(b)*mu(c). - Benedict W. J. Irwin, Mar 02 2022
EXAMPLE
a(4) = -1 since row 4 of triangle A043518 = (0, -1, 0, 0).
a(4) = -1 = (0, -1, 0, 1) dot (0, 1, 1, 0), where (0, -1, 0, 1) = row 4 of A054525 and A010051 = (0, 1, 1, 0, 1, 0, 1, 0, ...).
MATHEMATICA
Table[Sum[MoebiusMu[n/d] Boole[PrimeQ@ d], {d, Divisors@ n}], {n, 89}] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(Sage)
def A143519(n) :
D = filter(is_prime, divisors(n))
return add(moebius(n/d) for d in D)
[A143519(n) for n in (1..89)] # Peter Luschny, Feb 01 2012
(PARI) A143519(n) = sumdiv(n, d, isprime(d)*moebius(n/d)); \\ (After Luschny's Sage-code) - Antti Karttunen, Jul 19 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Gary W. Adamson, Aug 22 2008
EXTENSIONS
More terms from R. J. Mathar, Jan 19 2009
STATUS
approved