[go: up one dir, main page]

login
A141702
a(n) is the number of Carmichael numbers of the form prime(n)*prime(n')*prime(n") with n > n' > n".
5
0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 3, 1, 2, 0, 0, 0, 0, 1
OFFSET
1,7
COMMENTS
The formula and PARI code uses Korselt's criterion. This sequence is a somewhat trivial variant of the more interesting sequence giving the number of Carmichael numbers of the form prime(n)*prime(n')*prime(n") with n < n' < n" (known to be finite for given n).
LINKS
FORMULA
a(n) = # { pqr | p=prime(n) > q=prime(n') > r=prime(n") ; p-1 | pqr-1 ; q-1 | pqr-1 ; r-1 | pqr-1 }
EXAMPLE
a(7)=2 is the first nonzero term since 561 = 3*11*17 and 1105 = 5*13*17 are the two smallest Carmichael numbers and there's no other Carmichael number having prime(7)=17 as largest factor.
PROG
(PARI) A141702(n) = { local( p=prime(n), c=0 ); forprime( q=5, p-2, forprime( r=3, q-2, (p*q*r-1)%(p-1)==0 && (p*q*r-1)%(q-1)==0 && (p*q*r-1)%(r-1)==0 && c++ )); c }
CROSSREFS
Cf. A002997 and references therein ; A087788 ; A141703 ff.
Sequence in context: A257265 A045706 A045634 * A364048 A353657 A259896
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jun 30 2008
STATUS
approved