[go: up one dir, main page]

login
A139375
A Fibonacci-Catalan triangle. Also called the Fibonacci triangle.
8
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 12, 9, 4, 1, 8, 31, 26, 14, 5, 1, 13, 85, 77, 46, 20, 6, 1, 21, 248, 235, 150, 73, 27, 7, 1, 34, 762, 741, 493, 258, 108, 35, 8, 1, 55, 2440, 2406, 1644, 903, 410, 152, 44, 9, 1, 89, 8064, 8009
OFFSET
0,4
COMMENTS
First column is the Fibonacci numbers A000045(n+1). The second column is A090826.
Row sums are A090826(n+1). Diagonal sums are A139376. Inverse array is (1 - x + 2x^3 - x^4, x(1-x)), A201167.
Essentially A185937 with trailing zeros removed. - Ralf Stephan, Jan 01 2014
LINKS
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974. [N. J. A. Sloane, Nov 26 2011]
FORMULA
Riordan array (1/(1-x-x^2), xc(x)), c(x) the g.f. of A000108.
T(n,k) = k * Sum_{i=0..n-k} (Fibonacci(i+1)*binomial(2*(n-i)-k-1,n-i-1)/(n-i)) if k>0, and Fibonacci(n+1) if k=0. - Vladimir Kruchinin, Mar 09 2011
EXAMPLE
Triangle begins
1,
1, 1,
2, 2, 1,
3, 5, 3, 1,
5, 12, 9, 4, 1,
8, 31, 26, 14, 5, 1,
13, 85, 77, 46, 20, 6, 1,
21, 248, 235, 150, 73, 27, 7, 1,
34, 762, 741, 493, 258, 108, 35, 8, 1
The production matrix for this array is
1, 1,
1, 1, 1,
-1, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1
MAPLE
RIORDAN := proc(d, h, n, k)
d*h^k ;
expand(%) ;
coeftayl(%, x=0, n) ;
end proc:
A139375 := proc(n, k)
RIORDAN(1/(1-x-x^2), (1-sqrt(1-4*x))/2, n, k) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
T[n_, 0]:= Fibonacci[n + 1]; T[n_, k_]:= k*Sum[Fibonacci[i + 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 20 2016 *)
CROSSREFS
Sequence in context: A106196 A037027 A182810 * A106198 A202847 A054336
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 15 2008
EXTENSIONS
Alternative name added by N. J. A. Sloane, Nov 27 2011
STATUS
approved