[go: up one dir, main page]

login
A138744
Let r_1 = 1. Let r_{m+1} = r_1 + 1/(r_2 + 1/(r_3 +...(r_{m-1} + 1/r_m)...)), a continued fraction of rational terms. Then a(n) is the sum of the (positive integer) terms in the simple continued fraction of r_n.
2
1, 1, 2, 4, 8, 33, 128, 109, 344, 3760, 1829, 18367, 11168, 35246, 41103, 79356, 151643, 344725, 1249071, 1678788, 5385320, 19780986, 17348076, 30966961, 85647848, 160394455, 451333739, 623813606
OFFSET
1,3
COMMENTS
This sequence is the sum of terms in the n-th row of irregular array A138742.
EXAMPLE
r_5 = 31/18, for instance, equals the simple continued fraction 1+ 1/(1 + 1/(2 + 1/(1 + 1/(1 +1/2)))). The integer terms in this continued fraction are (1,1,2,1,1,2); so a(5) = 1+1+2+1+1+2 = 8.
CROSSREFS
Sequence in context: A191650 A036544 A094334 * A243547 A263623 A070897
KEYWORD
nonn,more
AUTHOR
Leroy Quet, Mar 27 2008
EXTENSIONS
a(7)-a(28) from Lucas A. Brown, Apr 12 2021
STATUS
approved