[go: up one dir, main page]

login
A138742
Let r_1 = 1. Let r_{m+1} = r_1 + 1/(r_2 + 1/(r_3 +...(r_{m-1} + 1/r_m)...)), a continued fraction of rational terms. Then row n of this irregular array contains the simple continued fraction terms of r_n.
3
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 4, 23, 1, 1, 2, 2, 9, 1, 90, 1, 14, 5, 2, 1, 1, 2, 2, 7, 1, 2, 4, 5, 1, 2, 4, 1, 8, 32, 2, 1, 8, 3, 1, 2, 1, 8, 5, 2, 3, 1, 1, 2, 2, 8, 11, 4, 3, 3, 2, 3, 4, 3, 8, 1, 6, 22, 4, 2, 1, 1, 1, 1, 1, 5, 1, 1, 2, 2, 1, 11, 1, 4, 3, 3, 97, 3, 1, 1, 4, 1, 1, 3, 87, 5, 2, 7, 3
OFFSET
1,3
COMMENTS
The number of terms in the continued fraction of r_n is A138743(n).
The continued fraction of the limit, as n->infinity, of r_n is sequence A053978.
r_n = A064845(n)/A064846(n).
EXAMPLE
{r_n}: 1, 1, 2, 5/3, 31/18, 1231/720,...
r_5 = 31/18, for instance, equals the simple continued fraction 1+ 1/(1 + 1/(2 + 1/(1 + 1/(1 +1/2)))). So row 5 is (1,1,2,1,1,2).
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Leroy Quet, Mar 27 2008
EXTENSIONS
a(19)-a(103) from Lucas A. Brown, Apr 12 2021
STATUS
approved