[go: up one dir, main page]

login
A138011
a(n) = number of positive divisors, k, of n where d(k) divides d(n). (d(m) = number of positive divisors of m, A000005)
4
1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 3, 5, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 5, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 10, 2, 4, 5, 5, 4, 8, 2, 5, 2, 4, 2, 11, 4, 4, 4, 6, 2, 11, 4, 5, 4, 4, 4, 9, 2, 5, 5, 4
OFFSET
1,2
LINKS
EXAMPLE
12 has 6 divisors (1,2,3,4,6,12). The number of divisors of each of these divisors of 12 form the sequence (1,2,2,3,4,6). Of these, five divide d(12)=6: 1,2,2,3,6. So a(12) = 5.
MATHEMATICA
Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], Length[Divisors[ # ]]] == 0 &]], {n, 1, 100}] (* Stefan Steinerberger, Feb 29 2008 *)
PROG
(PARI) A138011(n) = sumdiv(n, d, if(!(numdiv(n)%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
(Python)
from sympy import divisors, divisor_count
def a(n): return sum([1*(divisor_count(n)%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Feb 27 2008
EXTENSIONS
More terms from Stefan Steinerberger, Feb 29 2008
STATUS
approved