[go: up one dir, main page]

login
A137928
The even principal diagonal of a 2n X 2n square spiral.
14
2, 4, 10, 16, 26, 36, 50, 64, 82, 100, 122, 144, 170, 196, 226, 256, 290, 324, 362, 400, 442, 484, 530, 576, 626, 676, 730, 784, 842, 900, 962, 1024, 1090, 1156, 1226, 1296, 1370, 1444, 1522, 1600, 1682, 1764, 1850, 1936, 2026, 2116, 2210, 2304, 2402, 2500, 2602, 2704, 2810
OFFSET
1,1
COMMENTS
This is concerned with 2n X 2n square spirals of the form illustrated in the Example section.
FORMULA
a(n) = 2*n + 4*floor((n-1)^2/4) = 2*n + 4*A002620(n-1).
a(n) = A171218(n) - A171218(n-1). - Reinhard Zumkeller, Dec 05 2009
From R. J. Mathar, Jun 27 2011: (Start)
G.f.: 2*x*(1 + x^2) / ( (1 + x)*(1 - x)^3 ).
a(n) = 2*A000982(n). (End)
a(n+1) = (3 + 4*n + 2*n^2 + (-1)^n)/2 = A080335(n) + (-1)^n. - Philippe Deléham, Feb 17 2012
a(n) = 2 * ceiling(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = n^2 + (n mod 2). - Bruno Berselli, Oct 03 2017
Sum_{n>=1} 1/a(n) = Pi*tanh(Pi/2)/4 + Pi^2/24. - Amiram Eldar, Jul 07 2022
EXAMPLE
Example with n = 2:
.
7---8---9--10
| |
6 1---2 11
| | |
5---4---3 12
|
16--15--14--13
.
a(1) = 2(1) + 4*floor((1-1)/4) = 2;
a(2) = 2(2) + 4*floor((2-1)/4) = 4.
MAPLE
A137928:=n->2*ceil(n^2/2): seq(A137928(n), n=1..100); # Wesley Ivan Hurt, Jul 25 2017
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {2, 4, 10, 16}, 60] (* Harvey P. Dale, Aug 28 2017 *)
PROG
(Python) a = lambda n: 2*n + 4*floor((n-1)**2/4)
(PARI) a(n)=2*n+(n-1)^2\4*4 \\ Charles R Greathouse IV, May 21 2015
CROSSREFS
Cf. A000982, A002061 (odd diagonal), A002620, A080335, A171218.
Sequence in context: A189558 A111149 A123689 * A293154 A144834 A006584
KEYWORD
nonn,easy
AUTHOR
William A. Tedeschi, Feb 29 2008
STATUS
approved