[go: up one dir, main page]

login
A135179
p^5 - p^3 - p^2. Exponents are the prime numbers in decreasing order and p is the n-th prime.
1
20, 207, 2975, 16415, 159599, 368927, 1414655, 2468879, 6423647, 20485919, 28598399, 69291935, 115785599, 146927087, 229238975, 418043807, 714715439, 844365599, 1349819855, 1803866399, 2072677247, 3076557119, 3938461967, 5583346559, 8586418175, 10509059999, 11591637407, 14024280815, 15384932639
OFFSET
1,1
LINKS
FORMULA
p=A000040(n): a(n)= p^5 - p^3 - p^2 = A050997(n) - A030078(n) - A001248(n).
EXAMPLE
a(4)=16415 because the 4th prime number is 7, 7^5=16807, 7^3=343, 7^2=49 and 16807-343-49=16415.
MATHEMATICA
Table[p^5 - p^3 - p^2, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)
PROG
(Magma)[p^5-p^3-p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
Sequence in context: A325474 A364651 A133070 * A220939 A231059 A161513
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved