[go: up one dir, main page]

login
A134579
Column products of tables A133232 and A133233.
2
1, 4, 729, 256, 95367431640625, 0, 311973482284542371301330321821976049, 16777216, 150094635296999121, 0, 3574335935197503226412197580625705154978327969466895714094061686977589739390331653361877238387305580817715435470601
OFFSET
1,2
FORMULA
a(n) = if A014963(n)*A100994(n)-n >= 0 then n^(A014963(n)*A100994(n)-n) else 0.
EXAMPLE
a(1) = 1^(1*1-1) = 1
a(2) = 2^(2*2-2) = 4
a(3) = 3^(3*3-3) = 729
a(4) = 4^(2*4-4) = 256
a(5) = 5^(5*5-5) = 95367431640625
a(6) = 6^(1*1-6) = 0
MAPLE
A100994 := proc(n) if nops(numtheory[factorset](n)) <> 1 then 1 ; else n ; fi ; end: A014963 := proc(n) if nops(numtheory[factorset](n)) <> 1 then 1 ; else op(1, op(1, ifactors(n)[2])) ; fi ; end: A134579 := proc(n) local e ; e := A014963(n)*A100994(n)-n ; if e >= 0 then n^e ; else 0 ; fi ; end: seq(A134579(n), n=1..13) ; # R. J. Mathar, Jan 30 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Jan 23 2008
EXTENSIONS
More terms from R. J. Mathar, Jan 30 2008
STATUS
approved