[go: up one dir, main page]

login
A134058
Triangle T(n, k) = 2*binomial(n, k) with T(0, 0) = 1, read by rows.
11
1, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
OFFSET
0,2
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, -1, 0, 0, 0, 0, 0, ...] DELTA [2, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
Equals A028326 for all but the first term. - R. J. Mathar, Jun 08 2008
Warning: the row sums do not give A046055. - N. J. A. Sloane, Jul 08 2009
FORMULA
Double Pascal's triangle and replace leftmost column with (1,2,2,2,...).
M*A007318, where M = an infinite lower triangular matrix with (1,2,2,2,...) in the main diagonal and the rest zeros.
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
G.f.: (1+x+y)/(1-x-y). - Vladimir Kruchinin, Apr 09 2015
T(n, k) = 2*binomial(n, k) - [n=0]. - G. C. Greubel, Apr 26 2021
E.g.f.: 2*exp(x*(1+y)) - 1. - Stefano Spezia, Apr 03 2024
EXAMPLE
First few rows of the triangle:
1
2, 2;
2, 4, 2;
2, 6, 6, 2;
2, 8, 12, 8, 2;
2, 10, 20, 20, 10, 2;
...
MATHEMATICA
T[n_, k_]:= SeriesCoefficient[(1+x+y)/(1-x-y), {x, 0, n-k}, {y, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Apr 09 2015, after Vladimir Kruchinin *)
Table[2*Binomial[n, k] -Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 26 2021 *)
PROG
(Magma)
A134058:= func< n, k | n eq 0 select 1 else 2*Binomial(n, k) >;
[A134058(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2021
(Sage)
def A134058(n, k): return 2*binomial(n, k) - bool(n==0)
flatten([[A134058(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2021
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 05 2007
EXTENSIONS
Title changed by G. C. Greubel, Apr 26 2021
STATUS
approved