[go: up one dir, main page]

login
A133923
a(1)=1, and for n>1, a(n) = a(n-1)/2, if a(n-1) is divisible by 2, otherwise a(n) = A000005(n*a(n-1)).
1
1, 2, 1, 3, 4, 2, 1, 4, 2, 1, 2, 1, 2, 1, 4, 2, 1, 6, 3, 12, 6, 3, 4, 2, 1, 4, 2, 1, 2, 1, 2, 1, 4, 2, 1, 9, 6, 3, 6, 3, 4, 2, 1, 6, 3, 8, 4, 2, 1, 6, 3, 12, 6, 3, 8, 4, 2, 1, 2, 1, 2, 1, 6, 3, 8, 4, 2, 1, 4, 2, 1, 12, 6, 3, 9, 18, 9, 16, 8, 4, 2, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 6, 3, 8, 4, 2, 1, 6, 3, 18
OFFSET
1,2
COMMENTS
The formula could be generalized to a class of sequences as a(n)= A000005(A*a(n-1)+B) if a(n-1) is not divisible by C, else a(n)= a(n-1)/C, where A, B, C are integers. In this case we have A=n, B=0 and C=2.
PROG
(MIT/GNU Scheme) (define (A133923 n) (cond ((< n 2) n) ((even? (A133923 (-1+ n))) (/ (A133923 (-1+ n)) 2)) (else (A000005 (* n (A133923 (-1+ n)))))))
CROSSREFS
Cf. A000005.
Sequence in context: A286539 A004741 A352840 * A347296 A341231 A334081
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jan 07 2008
EXTENSIONS
Edited, corrected, extended and Scheme-code added by Antti Karttunen, Oct 05 2009
STATUS
approved