[go: up one dir, main page]

login
A131042
Natural numbers A000027 with 6n+3 and 6n+4 terms swapped.
6
1, 2, 4, 3, 5, 6, 7, 8, 10, 9, 11, 12, 13, 14, 16, 15, 17, 18, 19, 20, 22, 21, 23, 24, 25, 26, 28, 27, 29, 30, 31, 32, 34, 33, 35, 36, 37, 38, 40, 39, 41, 42, 43, 44, 46, 45, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 58, 57, 59, 60, 61, 62, 64, 63, 65, 66, 67, 68, 70, 69, 71, 72
OFFSET
1,2
FORMULA
a(n) = (24*floor(n/6)+3*n^2-3*n+8+9*floor(n/3)*(3*floor(n/3)-2*n+1)-(3*n^2-7*n+8+3*floor(n/3)*(9*floor(n/3)-6*n+7))*(-1)^floor(n/3))/4. - Luce ETIENNE, Apr 08 2017
From Colin Barker, Apr 08 2017: (Start)
G.f.: x*(1 + x + 2*x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
(End)
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 2, 4, 3, 5, 6, 7}, 80] (* Harvey P. Dale, Aug 26 2024 *)
PROG
(PARI) Vec(x*(1 + x + 2*x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^100)) \\ Colin Barker, Apr 08 2017
CROSSREFS
Sequence in context: A374791 A374792 A362075 * A274631 A368181 A375602
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 23 2007
STATUS
approved