OFFSET
0,2
COMMENTS
Unsigned bisection gives match to A002316 (Related to Bernoulli numbers). Note that all numbers in A002316 appear to be in A002531 (Numerators of continued fraction convergents to sqrt(3)) as well. a(12*n+5) = (0,0,0,0,...)
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq['i + .5i' + .5j' + .5k' + .5e]
LINKS
Robert Israel, Table of n, a(n) for n = 0..3492
Index entries for linear recurrences with constant coefficients, signature (2,-5,4,-1).
FORMULA
a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4) [Harvey P. Dale, Aug 31 2011]
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4)}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Dec 25 2016
MATHEMATICA
CoefficientList[Series[(1-x)(2x^2-4x+1)/(1-2x+5x^2-4x^3+x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -5, 4, -1}, {1, -3, -5, 7}, 50] (* Harvey P. Dale, Aug 31 2011 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jun 11 2007
STATUS
approved