[go: up one dir, main page]

login
A129824
a(n) = Product_{k=0..n} (1 + binomial(n,k)).
3
2, 4, 12, 64, 700, 17424, 1053696, 160579584, 62856336636, 63812936890000, 168895157342195152, 1169048914836855865344, 21209591746609937928524800, 1010490883477487017627972550656, 126641164340871500483202065902080000, 41817338589698457759723104703370865147904
OFFSET
0,1
COMMENTS
A product analog of the binomial expansion.
The sequence is a special case of a(n) = Product_{k=0..n} (1 + binomial(n,k)*x^k).
Let C be a collection of subsets of an n-element set S. Then a(n) is the number of possible shapes K = (k_0, ..., k_n) of C, where k_i is the number of i-element subsets of S in C. - Gabriel Cunningham (oeis(AT)gabrielcunningham.com), Nov 08 2007
REFERENCES
H. W. Gould, A product analog of the binomial expansion, unpublished manuscript, Jun 03 2007.
LINKS
FORMULA
a(n) = 2*A055612(n). - Reinhard Zumkeller, Jan 31 2015
a(n) ~ exp(n^2/2 + n - 1/12) * A^2 / (n^(n/2 + 1/3) * 2^((n-3)/2) * Pi^((n+1)/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 27 2017
EXAMPLE
a(4) = (1+1)(1+4)(1+6)(1+4)(1+1) = 2*5*7*5*2 = 700.
MATHEMATICA
Table[Product[1 + Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 27 2017 *)
PROG
(PARI) { a(n) = prod(k=0, n, 1 + binomial(n, k))}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2017
(Magma)
A129824:= func< n | (&*[1 + Binomial(n, k): k in [0..n]]) >;
[A129824(n): n in [0..20]]; // G. C. Greubel, Apr 26 2024
(SageMath)
def A129824(n): return product(1 + binomial(n, k) for k in range(n+1))
[A129824(n) for n in range(21)] # G. C. Greubel, Apr 26 2024
CROSSREFS
Sequence in context: A136512 A137160 A217716 * A266463 A013207 A172165
KEYWORD
easy,nonn
AUTHOR
Henry Gould, Jun 03 2007
EXTENSIONS
Corrected and extended by Vaclav Kotesovec, Oct 27 2017
STATUS
approved