[go: up one dir, main page]

login
A129761
First differences of Fibbinary numbers (A003714).
6
1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 22, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 43, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 86, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 22, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 171, 1, 1, 2, 1, 3, 1, 1, 6
OFFSET
0,3
COMMENTS
Theorem: If the Zeckendorf representation of M ends with exactly k >= 0 zeros, ...10^k, then a(n) = ceiling(2^k/3). Also, if the Zeckendorf representation of n (A014417(n)) is even then a(n) is given by A319952, otherwise a(n) = 1. - Jeffrey Shallit and N. J. A. Sloane, Oct 03 2018
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (First 2500 terms from Vincenzo Librandi)
FORMULA
a(n) = A005578(A035614(n)). - Alan Michael Gómez Calderón, Nov 01 2023
MAPLE
with(combinat): F:=fibonacci:
A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n)
while F(j+1)<=n do od; (j-1); end:
A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end:
A129761 := n -> A003714(n+1)-A003714(n):
[seq(A129761(n), n=0..120)]; # N. J. A. Sloane, Oct 03 2018, borrowing programs from other sequences
MATHEMATICA
Differences[Select[Range[600], !MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &]] (* Harvey P. Dale, Jul 17 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 14 2007
EXTENSIONS
a(0)=1 added by N. J. A. Sloane, Oct 02 2018
STATUS
approved