OFFSET
0,2
COMMENTS
In addition to all the automorphisms whose signature permutation satisfies the more restricted condition A127301(SP(n)) = A127301(n) for all n, there are also general tree-rotating automorphisms like *A057501, *A057502, *A069771 and *A069772 that satisfy also the condition A129599(SP(n)) = A129599(n) for all n. However, in contrast to A129593 this is not invariant under the automorphism *A072797. A000041(n) distinct values (seem to) occur in each range [A014137(n)..A014138(n)].
LINKS
A. Karttunen, Table of n, a(n) for n = 0..625
OEIS Wiki, Łukasiewicz words
FORMULA
EXAMPLE
The terms A079436(5), A079436(6) and A079436(8) are 2010, 2100 and 1110. After adding one to each number except the first one we get 2121, 2211 and 1221, each one which produces partition 1+1+2+2. Converting it to prime-exponents like explained in A129595, we get 2^0 * 3^0 * 5^1 * 7^1 = 35, thus a(5) = a(6) = a(8) = 35.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 01 2007
STATUS
approved