[go: up one dir, main page]

login
A126460
Triangle T, read by rows, where column k of matrix power T^( k(k+1)/2 ) equals left-shifted column (k-1) of T for k>=1.
10
1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 21, 21, 6, 1, 1, 274, 274, 75, 10, 1, 1, 5806, 5806, 1565, 195, 15, 1, 1, 182766, 182766, 48950, 5940, 420, 21, 1, 1, 8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1, 471517614, 471517614, 125727238, 14989472, 1006880
OFFSET
0,7
COMMENTS
Amazingly, A126460 = A126445^-1*A126450 = A126450^-1*A126454 = A126454^-1*A126457; and also A126465 = A126450*A126445^-1 = A126454*A126450^-1 = A126457*A126454^-1. Also, column k equals unsigned column k of the matrix inverse of triangle P_k defined by P_k(m,j) = C( C(j+2,3) - C(k+2,3) + m-j, m-j) for m>=j>=0.
FORMULA
G.f. of column k: 1/(1-x) = Sum_{n>=0} T(n+k,k)*x^n*(1-x)^p_k(n), so that column k equals the number of subpartitions of the partition p_k defined by: p_k(n) = (n^2 + (3*k+3)*n + (3*k^2+6*k-4))*n/6 for n>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
3, 3, 1, 1;
21, 21, 6, 1, 1;
274, 274, 75, 10, 1, 1;
5806, 5806, 1565, 195, 15, 1, 1;
182766, 182766, 48950, 5940, 420, 21, 1, 1;
8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1; ...
where column 1 of T^1 equals left-shifted column 0 of T.
Matrix cube T^3 begins:
1;
3, 1;
6, 3, (1);
22, 12, (3), 1;
163, 91, (21), 3, 1;
2167, 1219, (274), 33, 3, 1;
46248, 26091, (5806), 661, 48, 3, 1;
1460301, 824853, (182766), 20341, 1369, 66, 3, 1; ...
where column 2 of T^3 equals left-shifted column 1 of T.
Matrix power T^6 begins:
1;
6, 1;
21, 6, 1;
98, 33, 6, (1);
791, 281, 51, (6), 1;
10850, 3929, 710, (75), 6, 1;
234472, 85557, 15425, (1565), 105, 6, 1;
7444172, 2725402, 490806, (48950), 3080, 141, 6, 1; ...
where column 3 of T^6 equals left-shifted column 2 of T.
PROG
(PARI) {T(n, k)=abs((matrix(n+1, n+1, r, c, binomial((c-1)*c*(c+1)/3!-k*(k+1)*(k+2)/3!+r-c, r-c))^-1)[n+1, k+1])}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* As Defined by Matrix Product A126460 = A126445^-1*A126450: */
{T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!, r-c))), N=matrix(n+1, n+1, r, c, if(r>=c, binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1, r-c)))); (M^-1*N)[n+1, k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Columns: A126461, A126462, A126463, A126464; A126465 (dual); A107876 (variant); subpartitions defined: A115728.
Sequence in context: A178885 A087107 A155170 * A173503 A338114 A100940
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 27 2006
STATUS
approved