[go: up one dir, main page]

login
A126136
Binomial transform of A107430.
1
1, 2, 1, 4, 3, 2, 8, 7, 9, 3, 16, 15, 28, 16, 6, 32, 31, 75, 55, 40, 10, 64, 63, 186, 156, 165, 75, 20, 128, 127, 441, 399, 546, 336, 175, 35, 256, 255, 1016, 960, 1596, 1176, 896, 336, 70, 512, 511, 2295, 2223, 4320, 3564, 3528, 1848, 756, 126, 1024, 1023, 5110, 5020, 11115, 9855, 11880, 7680, 4620, 1470, 252
OFFSET
0,2
COMMENTS
Row sums = powers of 3.
FORMULA
Given M = A107430 as an infinite lower triangular matrix and P = Pascal's triangle, A126136 = P*M.
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
4, 3, 2;
8, 7, 9, 3;
16, 15, 28, 16, 6;
32, 31, 75, 55, 40, 10;
...
PROG
(PARI) tabl(nn) = {p = matrix(nn+1, nn+1, n, k, binomial(n-1, k-1)); m = matrix(nn+1, nn+1, n, k, if (k<=n, binomial(n-1, (k-1)\2), 0)); r = p*m; for (n=0, nn, for (k=0, n, print1(r[n+1, k+1], ", "); ); print(); ); } \\ Michel Marcus, Jul 03 2017
CROSSREFS
Cf. A107430.
Sequence in context: A243610 A182013 A144333 * A140169 A124731 A210658
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Dec 18 2006
EXTENSIONS
More terms from Philippe Deléham, Jul 02 2017
STATUS
approved