OFFSET
0,3
LINKS
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
EXAMPLE
1;
1, -2;
1, -3, 1;
1, -4, 3, 1;
1, -5, 6, 1, -2;
1, -6, 10, -1, -6, 1;
1, -7, 15, -6, -11, 6, 1;
1, -8, 21, -15, -15, 18, 1, -2;
MATHEMATICA
T[n_, k_] := (-1)^Floor[(k + 1)/2]*Binomial[n - Floor[(k + 1)/2], Floor[k/2]]; a = Table[CoefficientList[Sum[T[n, k]*p^k*(1 - p)^(n -k), {k, 0, n}], p], {n, 0, 10}]; Flatten[a]
PROG
(PARI) {T(n, k)=local(A); if(k<0||k>n, 0, A=sum(k=0, n, x^k*(1-x)^(n-k)*(-1)^((k+1)\2)*binomial(n-((k+1)\2), k\2)); polcoeff(A, k))}
(Sage)
@CachedFunction
def T(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*T(n-1, k) if n==1 else T(n-1, k)
return T(n-1, k-1) - T(n-2, k) - h
A122610 = lambda n, k: T(n, n-k)
for n in (0..9): [A122610(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 20 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 24 2006
Offset set to 0 by Michel Marcus, Feb 07 2014
STATUS
approved