[go: up one dir, main page]

login
A122028
Least positive prime primitive root of n-th prime.
6
3, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 43, 5, 3, 3, 2, 5, 17, 17, 2, 3, 19, 2, 2, 3, 7, 11, 2, 2, 5, 2, 5, 3, 29, 2, 2, 7, 5, 17, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2
OFFSET
1,1
REFERENCES
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. 2.
FORMULA
a(n) = A002233(n) for n>1. - Jonathan Sondow, May 18 2017
MAPLE
f:= proc(n) local p, q;
p:= ithprime(n);
q:= 2:
while numtheory:-order(q, p) <> p-1 do q:= nextprime(q) od:
q
end proc:
map(f, [$1..100]); # Robert Israel, Jan 16 2017
MATHEMATICA
a[1] = 3; a[n_] := (p = Prime[n]; Select[Range[p], PrimeQ[#] && MultiplicativeOrder[#, p] == EulerPhi[p] &, 1]) // First; Table[a[n], {n, 100}] (* Jean-François Alcover, Mar 30 2011 *)
a[1] = 3; a[n_] := SelectFirst[ PrimitiveRootList[ Prime[n]], PrimeQ]; Array[a, 101] (* Jean-François Alcover, Sep 28 2016 *)
CROSSREFS
Cf. A002233 (least prime primitive root).
Sequence in context: A240666 A052901 A127807 * A340300 A245070 A270226
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved