[go: up one dir, main page]

login
A120663
Expansion of x*(67 +2476*x +38216*x^2 -124633*x^3 +129444*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)*(1-6*x)).
1
0, 67, 3079, 65458, 436705, 3325420, 21257887, 137628082, 852017725, 5260500568, 32028617995, 194422680046, 1174383558985, 7081178928436, 42616157629303, 256244634375850, 1539564650731285, 9246057306575824, 55510175964258211
OFFSET
0,2
FORMULA
G.f.: x*(67 +2476*x +38216*x^2 -124633*x^3 +129444*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)*(1-6*x)). - Colin Barker, Nov 01 2012
MATHEMATICA
See link for Mathematica program that uses matrices.
LinearRecurrence[{9, -7, -93, 152, 84, -144}, {0, 67, 3079, 65458, 436705, 3325420}, 31] (* G. C. Greubel, Dec 26 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(67+2476*x+38216*x^2-124633*x^3+129444*x^4)/(1-9*x+7*x^2+93*x^3 - 152*x^4-84*x^5+144*x^6) )); // G. C. Greubel, Dec 26 2022
(SageMath)
def f(x): return x*(67+2476*x+38216*x^2-124633*x^3+129444*x^4)/(1-9*x+7*x^2+93*x^3-152*x^4-84*x^5+144*x^6)
def A120663_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A120663_list(30) # G. C. Greubel, Dec 26 2022
CROSSREFS
Sequence in context: A226713 A069397 A103727 * A261974 A328353 A078989
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 10 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jul 13 2007
Meaningful name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved