OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Roger L. Bagula, Mathematica program for A120663
Index entries for linear recurrences with constant coefficients, signature (9,-7,-93,152,84,-144).
FORMULA
G.f.: x*(67 +2476*x +38216*x^2 -124633*x^3 +129444*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)*(1-6*x)). - Colin Barker, Nov 01 2012
MATHEMATICA
See link for Mathematica program that uses matrices.
LinearRecurrence[{9, -7, -93, 152, 84, -144}, {0, 67, 3079, 65458, 436705, 3325420}, 31] (* G. C. Greubel, Dec 26 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(67+2476*x+38216*x^2-124633*x^3+129444*x^4)/(1-9*x+7*x^2+93*x^3 - 152*x^4-84*x^5+144*x^6) )); // G. C. Greubel, Dec 26 2022
(SageMath)
def f(x): return x*(67+2476*x+38216*x^2-124633*x^3+129444*x^4)/(1-9*x+7*x^2+93*x^3-152*x^4-84*x^5+144*x^6)
def A120663_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A120663_list(30) # G. C. Greubel, Dec 26 2022
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 10 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jul 13 2007
Meaningful name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved