[go: up one dir, main page]

login
A120657
Expansion of 2*x*(6 +59*x +257*x^2 - 294*x^3 -128*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)).
1
0, 12, 154, 1108, 4106, 19972, 73914, 323188, 1228906, 5144932, 19966874, 81856468, 321759306, 1304637892, 5166951034, 20825008948, 82833227306, 332742946852, 1326760898394, 5319714708628, 21240922384906, 85077652679812
OFFSET
0,2
FORMULA
G.f.: 2*x*(6 +59*x +257*x^2 - 294*x^3 -128*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)). - Colin Barker, Oct 19 2012
MATHEMATICA
LinearRecurrence[{3, 11, -27, -10, 24}, {0, 12, 154, 1108, 4106, 19972}, 41] (* G. C. Greubel, Dec 25 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 2*x*(6 +59*x+257*x^2-294*x^3-128*x^4)/(1-3*x-11*x^2+27*x^3+10*x^4-24*x^5) )); // G. C. Greubel, Dec 25 2022
(SageMath)
def f(x): return 2*x*(6+59*x+257*x^2-294*x^3-128*x^4)/(1-3*x-11*x^2 +27*x^3+10*x^4-24*x^5)
def A120657_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A120657_list(40) # G. C. Greubel, Dec 25 2022
CROSSREFS
Sequence in context: A180808 A004356 A036360 * A015612 A085260 A082173
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 10 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 25 2022
Meaningful name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved