[go: up one dir, main page]

login
A120164
a(n) = 6 + floor( Sum_{j=1..n-1} a(j)/4 ).
2
6, 7, 9, 11, 14, 17, 22, 27, 34, 42, 53, 66, 83, 103, 129, 161, 202, 252, 315, 394, 492, 615, 769, 961, 1202, 1502, 1878, 2347, 2934, 3667, 4584, 5730, 7163, 8953, 11192, 13990, 17487, 21859, 27324, 34155
OFFSET
1,1
LINKS
MATHEMATICA
f[n_, p_, q_]:= f[n, p, q]= p +Quotient[q +Sum[f[k, p, q], {k, n-1}], 4];
A120164[n_]:= f[n, 6, 0];
Table[A120164[n], {n, 60}] (* G. C. Greubel, Sep 05 2023 *)
PROG
(Magma)
function f(n, a, b)
t:=0;
for k in [1..n-1] do
t+:= a+Floor((b+t)/4);
end for;
return t;
end function;
g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
A120164:= func< n | g(n, 6, 0) >;
[A120164(n): n in [1..60]]; // G. C. Greubel, Sep 05 2023
(SageMath)
@CachedFunction
def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//4
def A120164(n): return f(n, 6, 0)
[A120164(n) for n in range(1, 61)] # G. C. Greubel, Sep 05 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Graeme McRae, Jun 10 2006
STATUS
approved