[go: up one dir, main page]

login
A118871
Number of binary sequences of length n containing exactly one subsequence 0101.
2
0, 0, 0, 0, 1, 4, 10, 24, 57, 128, 278, 596, 1260, 2628, 5430, 11136, 22683, 45936, 92574, 185764, 371347, 739840, 1469580, 2911224, 5753048, 11343800, 22322444, 43845120, 85973013, 168314604, 329041842, 642385248, 1252552077, 2439430272, 4745767138, 9223159852
OFFSET
0,6
COMMENTS
With only two 0's at the beginning, the convolution of A112575 with itself. Column 1 of A118869.
FORMULA
G.f.: x^4/(1-2*x+x^2-2*x^3+x^4)^2.
a(n) = Sum_{j=0..n-4} A112575(j+1)*A112575(n-j-3). - G. C. Greubel, Jan 14 2022
EXAMPLE
a(5) = 4 because we have 01010, 01011, 00101 and 10101.
MAPLE
g:=z^4/(1-2*z+z^2-2*z^3+z^4)^2: gser:=series(g, z=0, 40): seq(coeff(gser, z, n), n=0..35);
MATHEMATICA
LinearRecurrence[{4, -6, 8, -11, 8, -6, 4, -1}, {0, 0, 0, 0, 1, 4, 10, 24}, 40] (* G. C. Greubel, Jan 14 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0, 0, 0] cat Coefficients(R!( x^4/(1 -2*x +x^2 -2*x^3 +x^4)^2 )); // G. C. Greubel, Jan 14 2022
(Sage)
@CachedFunction
def A112575(n): return sum((-1)^k*binomial(n-k, k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2)))
def A118871(n): return sum( A112575(j+1)*A112575(n-j-3) for j in (0..n-4) )
[A118871(n) for n in (0..40)] # G. C. Greubel, Jan 14 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 03 2006
STATUS
approved