OFFSET
1,12
COMMENTS
Comments following discussions with David Applegate, May 05 2006: (Start)
Certainly a(10) = -1 and probably a(n) is always -1 if n is a multiple of 10. Furthermore a(15) is almost certainly -1: T_15 has not reached a cycle in 10^7 terms (see A118532).
(End)
If n is a multiple of 10 the operation can never generate a trailing zero and so is reversible. So it loops only if it returns to the start, which is impossible. Hence a(10k) = -1. - Martin Fuller, May 12 2006
I suspect a(115) = 385592406, A117817(115) = 79560. Can someone confirm? - Martin Fuller, May 12 2006
The map f: x -> R(x)+n is injective, f(x)=f(y) <=> R(x)=R(y) <=> x=y, unless x or y only differ in trailing zeros. For n=10k, however, trailing zeros can never occur. (This also implies that the terms are of increasing length.) Thus, for n=10k, no number can occur twice in the orbit of 1 under f, i.e., a(10k)=-1. A sketch of proof for a(15)=-1 is given in A118532. As of today, no other n with a(n)=-1 seems to be known. - M. F. Hasler, May 06 2012
LINKS
N. J. A. Sloane and others, Sequences of RADD type, OEIS wiki.
EXAMPLE
T_2 enters a cycle of length 81 after 1 step.
MATHEMATICA
ReverseNum[n_] := FromDigits[Reverse[IntegerDigits[n]]]; maxLen=10000; Table[z=1; lst={1}; While[z=ReverseNum[z]+n; !MemberQ[lst, z] && Length[lst]<maxLen, AppendTo[lst, z]]; If[Length[lst]<maxLen, Position[lst, z][[1, 1]]-1, -1], {n, 100}] (* T. D. Noe *)
PROG
CROSSREFS
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, following discussions with Luc Stevens, May 04 2006
EXTENSIONS
a(21)-a(33) from Luc Stevens, May 08 2006
a(33) onwards from T. D. Noe, May 10 2006
Further terms from Martin Fuller, May 12 2006
STATUS
approved