OFFSET
0,6
REFERENCES
Steven Wolfram, The Mathematica Book, Cambridge University Press, 3rd ed. 1996, page 728
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
Wikipedia, Fibonacci Polynomial
FORMULA
EXAMPLE
Triangle begins as:
0;
1, 1;
0, 1, 2;
1, 2, 5, 10;
0, 3, 12, 33, 72;
1, 5, 29, 109, 305, 701;
0, 8, 70, 360, 1292, 3640, 8658;
1, 13, 169, 1189, 5473, 18901, 53353, 129949;
MAPLE
with(combinat):for n from 0 to 9 do seq(fibonacci(n, m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
MATHEMATICA
Table[Fibonacci[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Python)
from sympy import fibonacci
def T(n, m): return 0 if n==0 else fibonacci(n, m)
for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Aug 12 2017
(Magma)
A117715:= func< n, k | k eq 0 select (n mod 2) else Evaluate(DicksonSecond(n-1, -1), k) >;
[A117715(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 01 2024
(SageMath)
def A117715(n, k): return lucas_number1(n, k, -1)
flatten([[A117715(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 01 2024
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Apr 13 2006
EXTENSIONS
Definition simplified by the Assoc. Editors of the OEIS, Nov 17 2009
STATUS
approved