[go: up one dir, main page]

login
A117186
Expansion of (1+x)c(x^2)/((1-xc(x^2))*sqrt(1-4x^2)), c(x) the g.f. of A000108.
2
1, 2, 5, 9, 21, 38, 86, 157, 349, 642, 1410, 2610, 5682, 10572, 22860, 42717, 91869, 172298, 368906, 694054, 1480486, 2793012, 5938740, 11230834, 23813746, 45131348, 95462996, 181268292, 382594884, 727747608, 1533053976
OFFSET
0,2
COMMENTS
Row sums of triangle A117184.
FORMULA
G.f.: (1+x)(sqrt(1-4x^2)+2x-1)/(2x(1-2x)*sqrt(1-4x^2)); a(n)=sum{k=0..n, C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2}.
G.f.: (1+x)(1+2x-sqrt(1-4x^2))/(2x(1-4x^2)); a(n)=(3*2^n-binomial(2*floor((n+1)/2),floor((n+1)/2)))/2; - Paul Barry, Jan 20 2008
Conjecture: a(n) = A058622(n) + A058622(n+1). [R. J. Mathar, Nov 21 2008]
Conjecture: -(n+1)*a(n) +(n+1)*a(n-1) +2*(3*n-2)*a(n-2) -4*n*a(n-3) +8*(3-n)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
CROSSREFS
Sequence in context: A192572 A300531 A097163 * A155042 A373638 A001851
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 01 2006
STATUS
approved