[go: up one dir, main page]

login
A117183
a(n) = smallest prime dividing n-th nonsquarefree positive integer.
3
2, 2, 3, 2, 2, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 11, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 13, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2
OFFSET
1,1
LINKS
FORMULA
EXAMPLE
12, the 4th nonsquarefree positive integer, is 2^2 * 3. 2 is the smallest prime dividing 12. So a(4) = 2.
MAPLE
with(numtheory): a:=proc(n) if mobius(n)=0 then op(1, factorset(n)) fi end: seq(a(n), n=1..345); # Emeric Deutsch
MATHEMATICA
Needs["NumberTheory`NumberTheoryFunctions`"]; FactorInteger[ # ][[1, 1]] & /@ Select[ Range@252, !SquareFreeQ@# &] (* Robert G. Wilson v *)
FactorInteger[#][[1, 1]]&/@DeleteCases[Range[300], _?SquareFreeQ] (* Harvey P. Dale, Jun 02 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 01 2006
EXTENSIONS
More terms from Emeric Deutsch and Robert G. Wilson v, Mar 06 2006
STATUS
approved