OFFSET
1,1
COMMENTS
If 4^m+2^m-1 is prime then n=2^(m-1)*(4^m+2^m-1) is in the sequence because 2n-2^d(n)=2^m*(4^m+2^m-1)-2^(m*2)=2^m* (4^m-1)=2^m*(2^m-1)*(2^m+1)=(2^m-1)*(4^m+2^m)=sigma(2^(m-1)) *sigma(4^m+2^m-1)=sigma(2^(m-1)*(4^m+2^m-1))=sigma(n). A110082 gives such terms of this sequence.
a(22) <= 556915822208. a(23) <= 9311639470208. a(24) <= 29297682437888. - Donovan Johnson, Jan 31 2009
a(23) > 6*10^12. - Giovanni Resta, Aug 14 2013
MATHEMATICA
Do[If[DivisorSigma[1, n] == 2n - 2^DivisorSigma[0, n], Print[n]], {n, 925000000}]
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Farideh Firoozbakht, Aug 03 2005
EXTENSIONS
a(18)-a(21) from Donovan Johnson, Jan 31 2009
a(22) confirmed by Giovanni Resta, Aug 14 2013
STATUS
approved