OFFSET
0,2
COMMENTS
The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - Wolfdieter Lang, Oct 04 2019
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, page 5.
FORMULA
T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n.
T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - Peter Luschny, Aug 16 2012
T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - Wolfdieter Lang, Oct 03 2019
G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - Vladimir Kruchinin, Jan 12 2024
EXAMPLE
From Wolfdieter Lang, Oct 04 2019: (Start)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 5 3 2
3: 15 10 7 5
4: 51 36 26 19 14
5: 188 137 101 75 56 42
6: 731 543 406 305 230 174 132
7: 2950 2219 1676 1270 965 735 561 429
8: 12235 9285 7066 5390 4120 3155 2420 1859 1430
9: 51822 39587 30302 23236 17846 13726 10571 8151 6292 4862
10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
... reformatted and extended.
-------------------------------------------------------------------------
The array A(n, k) begins:
n\k 0 1 2 3 4 5 6 ...
-------------------------------------------
0: 1 1 2 5 14 42 132 ... A000108
1 2 3 7 19 56 174 561 ... A005807
2: 5 10 26 75 230 735 2420 ...
3: 15 36 101 305 965 3155 10571 ...
4: 51 137 406 1270 4120 13726 46672 ...
5: 188 543 1676 5390 17846 60398 207963 ...
... (End)
MAPLE
# Uses floating point, precision might have to be adjusted.
C := n -> binomial(2*n, n)/(n+1);
H := (n, k) -> hypergeom([k-n, k+1/2], [k+2], -4);
T := (n, k) -> C(k)*H(n, k);
seq(print(seq(round(evalf(T(n, k), 32)), k=0..n)), n=0..7);
# Peter Luschny, Aug 16 2012
MATHEMATICA
T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[_, _] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
PROG
(Sage)
def T(n, k) :
if k > n : return 0
if n == k : return binomial(2*n, n)/(n+1)
return T(n-1, k) + T(n, k+1)
A106534 = lambda n, k: T(n, k)
for n in (0..5): [A106534(n, k) for k in (0..n)] # Peter Luschny, Aug 16 2012
(Magma)
function T(n, k)
if k gt n then return 0;
elif k eq n then return Catalan(n);
else return T(n-1, k) + T(n, k+1);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 18 2021
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, May 30 2005
STATUS
approved