[go: up one dir, main page]

login
A106187
Sequence array for central binomial numbers A000984.
3
1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
OFFSET
0,2
FORMULA
T(n, k) = binomial(2*(n-k), n-k).
Riordan array (1/sqrt(1-4x), x).
EXAMPLE
Triangle begins:
1;
2, 1;
6, 2, 1;
20, 6, 2, 1;
70, 20, 6, 2, 1;
252, 70, 20, 6, 2, 1;
...
The matrix inverse starts:
1;
-2,1;
-2,-2,1;
-4,-2,-2,1;
-10,-4,-2,-2,1;
-28,-10,-4,-2,-2,1;
-84,-28,-10,-4,-2,-2,1;
-264,-84,-28,-10,-4,-2,-2,1;
apparently related to A002420. - R. J. Mathar, Apr 08 2013
MAPLE
A106187 := proc(n, k)
binomial(2*(n-k), n-k) ;
end proc: # R. J. Mathar, Apr 08 2013
MATHEMATICA
T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)
CROSSREFS
Row sums are A006134.
Antidiagonal sums are A106188.
Cf. A000984.
Sequence in context: A101024 A124730 A114283 * A110135 A114423 A335109
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 24 2005
STATUS
approved