OFFSET
0,1
COMMENTS
LINKS
Michael De Vlieger, Rows n = 0..140 of triangle, flattened
Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 18.
Atli Fannar Franklín, Anders Claesson, Christian Bean, Henning Úlfarsson, and Jay Pantone, Restricted Permutations Enumerated by Inversions, arXiv:2406.16403 [cs.DM], 2024. See p. 5.
FORMULA
a(n) = A097806(n-1) for n > 0. - Philippe Deléham, Oct 16 2007
T(n,k) = C(n,k-n) + C(n,-k) - C(0,n+k), 0 <= k <= n. - Eric Werley, Jul 01 2011
From Stefano Spezia, Jul 04 2024: (Start)
G.f.: (1 - x^2*y)/((1 - x)*(1 - x*y)).
E.g.f.: BesselI(0, 2*sqrt(x*y)) + exp(x) - 1. (End)
EXAMPLE
First few rows are:
1;
1, 1;
1, 0, 1;
1, 0, 0, 1;
1, 0, 0, 0, 1;
1, 0, 0, 0, 0, 1;
...
MATHEMATICA
Table[Boole[n == 0 || Mod[k, n] == 0], {n, 0, 14}, {k, 0, n}] (* or *)
Table[Binomial[n, k - n] + Binomial[n, -k] - Binomial[0, n + k], {n, 0, 14}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 19 2016 *)
PROG
(Magma) r:=14; T:=ScalarMatrix(r, 1); for n in [1..r] do T[n, 1]:=1; end for; &cat[ [ T[n, k]: k in [1..n] ]: n in [1..r] ];
(Magma) /* As triangle */ [[Binomial(n, k-n)+Binomial(n, -k)-Binomial(0, n+k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 20 2016
(PARI) for(n=0, 15, for(k=0, n, print1(if(k==0||k==n, 1, 0), ", "))) \\ G. C. Greubel, Dec 08 2018
(Sage)
def A103451(n, k): return 1 if (k==0 or k==n) else 0
flatten([[A103451(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 14 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Feb 06 2005
EXTENSIONS
Edited by Klaus Brockhaus, Jan 26 2011
STATUS
approved