[go: up one dir, main page]

login
A102615
Nonprime numbers of order 2.
17
1, 8, 10, 14, 15, 16, 20, 22, 24, 25, 27, 30, 32, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49, 50, 51, 54, 55, 56, 58, 62, 63, 64, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 82, 85, 86, 87, 88, 90, 92, 93, 94, 96, 99, 100, 102, 104, 105, 108, 110, 111, 114, 115, 116, 117, 118, 120
OFFSET
1,2
COMMENTS
nps(n,0) -> list nonprime(n) or the sequence of nonprime numbers. nps(n,1) -> list nonprime(nonprime(n)) or nps of order 1 nps(n,2) -> list nonprime(nonprime(nonprime(n))) or nps of order 2 ..... The order is the number of nestings - 1. We avoid the nestings in the script with a loop.
Nonprimes (A018252) with nonprime (A018252) subscripts. a(n) U A078782(n) = A018252(n), a(n+1) U A175250(n) = A018252(n) for n >= 1. a(n) = nonprime(nonprime(n)) = A018252(A018252(n)). a(4) = 14 because a(4) = b(b(4)) = b(8) = 14, b = nonprime. a(1) = 1, a(n) = nonprimes (A018252) with composite (A002808) subscripts for n >=2. [Jaroslav Krizek, Mar 13 2010]
EXAMPLE
Nonprime(2) = 4.
Nonprime(4) = 8 the second entry.
MAPLE
# For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
MATHEMATICA
nonPrime[n_] := FixedPoint[n + PrimePi[ # ] &, n]; Nest[nonPrime, Range[66], 2] (* Robert G. Wilson v, Feb 04 2005 *)
PROG
(PARI) \We perform nesting(s) with a loop. cics(n, m) = { local(x, y, z); for(x=1, n, z=x; for(y=1, m+1, z=composite(z); ); print1(z", ") ) } composite(n) = \ The n-th composite number. 1 is defined as a composite number. { local(c, x); c=1; x=0; while(c <= n, x++; if(!isprime(x), c++); ); return(x) }
CROSSREFS
Cf. A018252.
Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.
Sequence in context: A101764 A309065 A048591 * A308874 A030490 A076639
KEYWORD
nonn
AUTHOR
Cino Hilliard, Jan 31 2005
EXTENSIONS
Edited by Robert G. Wilson v, Feb 04 2005
STATUS
approved