[go: up one dir, main page]

login
A102368
Smallest k>0 such that n^k + 1 is not prime.
1
3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2
OFFSET
2,1
COMMENTS
a(odd) = 1.
Since n + 1 divides n^3 + 1, a(n) <= 3. - Robert Israel, Jun 15 2014
LINKS
EXAMPLE
n=10: 10^1+1=11=A000040(5), 10^2+1=101=A000040(26), but 10^3+1=1001=7*11*13, therefore a(10)=3.
MAPLE
A102368:= proc(n)
if n::odd or not isprime(n+1) then 1
elif isprime(n^2+1) then 3 else 2
fi
end proc; # Robert Israel, Jun 15 2014
MATHEMATICA
sk[n_]:=Module[{k=1}, While[PrimeQ[n^k+1], k++]; k]; Array[sk, 110, 2] (* Harvey P. Dale, Apr 09 2016 *)
CROSSREFS
Cf. A070689: a(n) = 3.
Sequence in context: A201681 A062174 A154754 * A374146 A277109 A359262
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 22 2005
STATUS
approved