[go: up one dir, main page]

login
A101097
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(2 + 4*n + n^2)/840.
16
1, 12, 69, 272, 846, 2232, 5214, 11088, 21879, 40612, 71643, 121056, 197132, 310896, 476748, 713184, 1043613, 1497276, 2110273, 2926704, 3999930, 5393960, 7184970, 9462960, 12333555, 15919956, 20365047, 25833664, 32515032, 40625376, 50410712
OFFSET
1,2
COMMENTS
Fourth partial sums of cubes (A000578). Partial sums of A101094.
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) for k=4. - Alexander R. Povolotsky, May 17 2008
G.f.: x*(1 + 4*x + x^2)/(1-x)^8. - R. J. Mathar, Jun 13 2008
a(n) = Sum_{k=1..n} A000217(k)^2*A000217(n-k+1). - Bruno Berselli, Sep 04 2013
E.g.f.: x*(840 + 4200*x + 5040*x^2 + 2240*x^3 + 427*x^4 + 35*x^5 + x^6) *exp(x)/840. - G. C. Greubel, Dec 01 2018
MATHEMATICA
Table[Binomial[n+4, 5]*(2+4*n+n^2)/7, {n, 0, 50}] (* G. C. Greubel, Feb 17 2017 *)
PROG
(PARI) {A101097(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(2+4*n+n^2)/840} \\ R. J. Mathar, Dec 06 2011
(Magma) A000217:=func<i | i*(i+1)/2>; [&+[A000217(k)^2*A000217(n-k+1): k in [1..n]]: n in [1..40]]; // Bruno Berselli, Sep 04 2013
(Sage) [binomial(n+4, 5)*(2+4*n+n^2)/7 for n in (1..40)] # G. C. Greubel, Dec 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
EXTENSIONS
Edited by Ralf Stephan, Dec 16 2004
STATUS
approved