OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)
FORMULA
a(n) ~ n + log(n)^2/2 + c, where c = A363704 = sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k) = 0.9885496011422687506447541083399712644219986838..., where sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 17 2023
EXAMPLE
floor(1^(1/1)+2^(1/2)+3^(1/3))=3 and floor(1^(1/1)+2^(1/2)+3^(1/3)+4^(1/4))=5.
MAPLE
MATHEMATICA
Table[Floor[Sum[k^(1/k), {k, 1, n}]], {n, 1, 50}] (* G. C. Greubel, Feb 03 2018 *)
PROG
(PARI) for(n=1, 30, print1(floor(sum(k=1, n, k^(1/k))), ", ")) \\ G. C. Greubel, Feb 03 2018
(Magma) [Floor((&+[k^(1/k): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Feb 03 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 16 2004
STATUS
approved