[go: up one dir, main page]

login
A098504
Number of compositions of n such that every part occurs with the same multiplicity.
35
1, 1, 2, 4, 5, 6, 20, 14, 28, 49, 72, 66, 298, 134, 304, 646, 707, 618, 3794, 1178, 4856, 7926, 6300, 4758, 64004, 9267, 19624, 69346, 76148, 30462, 1491780, 55742, 294642, 1181578, 386820, 932804, 21400221, 315974, 1045372, 12081290, 66532116, 958266
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum(Sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/Product(1-x^(l*j), j=1..k), k=1..infinity), l=1..infinity).
EXAMPLE
a(6) = 20 because we have 6, 15, 51, 24, 42, 33, 123, 132, 213, 231, 312, 321, 222, 1122, 1212, 1221, 2112, 2121, 2211 and 111111.
MAPLE
G:= sum(sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/product(1-x^(l*j), j=1..k), k=1..40), l=1..55):Gser:=series(G, x=0, 55):seq(coeff(Gser, x^n), n=1..46); # Emeric Deutsch, Mar 28 2005
# second Maple program:
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x))))
end:
a:= n-> `if`(n=0, 1, add((p-> add(coeff(p, x, i)*(i*m)!/(m!)^i,
i=0..degree(p)))(b(n/m$2)), m=numtheory[divisors](n))):
seq(a(n), n=0..70); # Alois P. Heinz, May 24 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x]]]]; a[n_] := If[n == 0, 1, Sum[Function[p, Sum[Coefficient[p, x, i]*(i*m)!/m!^i, {i, 0, Exponent[p, x]}]][b[n/m, n/m]], {m, Divisors[n]}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A336129 A008319 A033311 * A137653 A021411 A257433
KEYWORD
nonn,look
AUTHOR
Vladeta Jovovic, Oct 26 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 28 2005
a(0)=1 from Alois P. Heinz, May 24 2014
STATUS
approved