[go: up one dir, main page]

login
A098405
Expansion of (1-sqrt(1-8*x))/((1-x)*(4*x*sqrt(1-8*x))).
1
1, 7, 47, 327, 2343, 17127, 126951, 950631, 7173991, 54471527, 415652711, 3184708455, 24485137255, 188802730855, 1459525454695, 11307626564455, 87775235181415, 682523302202215, 5315297718995815, 41450938169985895, 323653082644384615, 2529960757626047335
OFFSET
0,2
COMMENTS
Partial sums of A069720.
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k+1, k)*2^k.
D-finite with recurrence: (n+1)*a(n) = (9*n+5)*a(n-1) - 4*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 2^(3*n+4)/(7*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
MATHEMATICA
Table[SeriesCoefficient[(1-Sqrt[1-8*x])/((1-x)*(4*x*Sqrt[1-8*x])), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
Accumulate[Table[2^(n-1) Binomial[2n-1, n], {n, 20}]] (* Harvey P. Dale, Jan 20 2013 *)
PROG
(PARI) my(x='x+O('x^66)); Vec((1-sqrt(1-8*x))/((1-x)*(4*x*sqrt(1-8*x)))) \\ Joerg Arndt, May 11 2013
(Magma) [n le 2 select 7^(n-1) else ((9*n-4)*Self(n-1) - 4*(2*n-1)*Self(n-2))/n: n in [1..30]]; // G. C. Greubel, Dec 27 2023
(SageMath)
def A098405(n): return sum( binomial(2*k+1, k)*2^k for k in range(n+1))
[A098405(n) for n in range(41)] # G. C. Greubel, Dec 27 2023
CROSSREFS
Cf. A069720.
Sequence in context: A126528 A214992 A241364 * A104092 A024187 A001711
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 06 2004
STATUS
approved