[go: up one dir, main page]

login
A097443
Half-period primes, i.e., primes p for which the decimal expansion of 1/p has period (p-1)/2.
17
3, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991
OFFSET
1,1
COMMENTS
Primes p for which 10 has multiplicative order (p-1)/2. - Robert Israel, Jul 15 2016
EXAMPLE
13 is a half-period prime because 1/13 = 0.076923076923076923076923..., which has period 6, or (13-1)/2.
MAPLE
select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/2,
[seq(t, t = 3..1000, 2)]); # Robert Israel, Jul 15 2016
MATHEMATICA
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 200]], f[ # ] == 2 &] (* Robert G. Wilson v, Sep 14 2004 *)
PROG
(PARI) is(n)= gcd(10, n)==1 && isprime(n) && znorder(Mod(10, n))==(n-1)/2 \\ Dana Jacobsen, Jul 19 2016
(Perl) use ntheory ":all"; forprimes { say if znorder(10, $_) == ($_-1)/2; } 1, 1000; # Dana Jacobsen, Jul 19 2016
CROSSREFS
Almost the same as A001914.
Sequence in context: A235265 A347988 A275081 * A248368 A171517 A179026
KEYWORD
nonn
AUTHOR
Julien Peter Benney (jpbenney(AT)ftml.net), Aug 23 2004
EXTENSIONS
Edited (including prepending 3), at the suggestion of Georg Fischer, by N. J. A. Sloane, Oct 19 2018
STATUS
approved