[go: up one dir, main page]

login
A093768
Positive first differences of the rows of triangle A088459, which enumerates symmetric Dyck paths.
7
1, 1, 1, 1, 2, 3, 1, 3, 8, 6, 1, 4, 15, 20, 20, 1, 5, 24, 45, 75, 50, 1, 6, 35, 84, 189, 210, 175, 1, 7, 48, 140, 392, 588, 784, 490, 1, 8, 63, 216, 720, 1344, 2352, 2352, 1764, 1, 9, 80, 315, 1215, 2700, 5760, 7560, 8820, 5292, 1, 10, 99, 440, 1925, 4950, 12375, 19800
OFFSET
0,5
COMMENTS
Suggested by Bozydar Dubalski (slawb(AT)atr.bydgoszcz.pl). Related to walks on a square lattice: main diagonal forms A005558, secondary diagonals form A005559, A005560, A005561, A005562, A005563.
FORMULA
T(n, k) = C(n+1, ceiling(k/2))*C(n, floor(k/2)) - C(n+1, ceiling((k-1)/2))*C(n, floor((k-1)/2)) for n>=k>=0.
EXAMPLE
1;
1, 1;
1, 2, 3;
1, 3, 8, 6;
1, 4, 15, 20, 20;
1, 5, 24, 45, 75, 50;
1, 6, 35, 84, 189, 210, 175;
MAPLE
A093768 := proc(n, k)
if k = 0 then
A088459(n, k);
else
A088459(n, k)-A088459(n, k-1);
end if;
end proc:
seq(seq(A093768(n, k), k=0..n-1), n=1..10) ; # R. J. Mathar, Apr 02 2017
MATHEMATICA
T[n_, k_] := Binomial[n + 1, Ceiling[k/2]]*Binomial[n, Floor[k/2]] - Binomial[n + 1, Ceiling[(k - 1)/2]]*Binomial[n, Floor[(k - 1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 25 2017 *)
PROG
(PARI) {T(n, k) =binomial(n+1, ceil(k/2))*binomial(n, floor(k/2)) -binomial(n+1, ceil((k-1)/2))*binomial(n, floor((k-1)/2))}
CROSSREFS
Cf. A088459, A005558-A005562, A005563 (column 3), A005564 (column 4), A005565 (column 5), A005566 (row sums).
Sequence in context: A121424 A214978 A295380 * A209419 A119011 A340440
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 16 2004
STATUS
approved