OFFSET
0,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
T(n, k) = C(n+1, ceiling(k/2))*C(n, floor(k/2)) - C(n+1, ceiling((k-1)/2))*C(n, floor((k-1)/2)) for n>=k>=0.
EXAMPLE
1;
1, 1;
1, 2, 3;
1, 3, 8, 6;
1, 4, 15, 20, 20;
1, 5, 24, 45, 75, 50;
1, 6, 35, 84, 189, 210, 175;
MAPLE
MATHEMATICA
T[n_, k_] := Binomial[n + 1, Ceiling[k/2]]*Binomial[n, Floor[k/2]] - Binomial[n + 1, Ceiling[(k - 1)/2]]*Binomial[n, Floor[(k - 1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 25 2017 *)
PROG
(PARI) {T(n, k) =binomial(n+1, ceil(k/2))*binomial(n, floor(k/2)) -binomial(n+1, ceil((k-1)/2))*binomial(n, floor((k-1)/2))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 16 2004
STATUS
approved